Introduction to Modern Cryptography Recitation 7

Orit Moskovich Tel Aviv University December 14, 2016

Based on chapter 10.2.2 in Introduction to Modern Cryptography, Katz-Lindell

CPA Security

Adversarial indistinguishability experiment for A:

- 1. A random key (pk, sk) is generated using Gen
- 2. The adversary A is given pk and outputs a pair of messages m_0, m_1 of the same length
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen
- 4. The ciphertext $c = Enc_{pk}(m_b)$ is computed and given to A
- 5. A outputs a bit b'

A wins $\Leftrightarrow b = b'$

Definition. A PKE scheme (Gen, Enc, Dec) is ε -CPA-secure (chosen plaintext attack) if for every PPT adversary A it holds that $\Pr[A \text{ wins}] \leq \frac{1}{2} + \varepsilon$

Adversarial indistinguishability experiment for A_{mult} :

- 1. A random key (*pk*, *sk*) is generated using *Gen*
- 2. The adversary A_{mult} is given pk and outputs a pair of vectors

$$M_0 = (m_0^1, \dots, m_0^t)$$
 and $M_1 = (m_1^1, \dots, m_1^t)$, where $\forall i. |m_0^t| = |m_1^t|$

3. A random bit $b \leftarrow \{0,1\}$ is chosen

4. The vector
$$C = \left(Enc_{pk}(m_b^1), \dots, Enc_{pk}(m_b^t)\right)$$
 is given to A_{mult}

5. A_{mult} outputs a bit b'

$$A_{mult}$$
 wins $\Leftrightarrow b = b'$

Definition. An encryption scheme is ε -CPA-secure for multiple encryptions if for every PPT adversary A_{mult} it holds that $\Pr[A_{mult} \text{ wins}] \leq \frac{1}{2} + \varepsilon$

Theorem. If an encryption scheme is ε -CPA-secure, then it is ε_t -CPA-secure for multiple encryptions

• Proof – using hybrid arguments

Security for 2 Encryptions

• We'll start with the "easy" case

Theorem. If an encryption scheme is ε -CPA-secure, then it is ε' -CPA-secure for **2** encryptions

- Let A_2 as follows:
- 1. A random key (*pk*, *sk*) is generated using *Gen*
- 2. The adversary A_2 is given pk and outputs a pair of vectors $M_0 = (m_0^1, m_0^2)$ and $M_1 = (m_1^1, m_1^2)$
- 3. A random bit $b \leftarrow \{0,1\}$ is chosen
- 4. The vector $C = \left(Enc_{pk}(m_b^1), Enc_{pk}(m_b^2)\right)$ is given to A_2
- 5. A_2 outputs a bit b'

• We'll prove:
$$\Pr[A_2 \text{ wins}] \leq \frac{1}{2} + \varepsilon'$$

- Let A_1 as follows:
- 1. A random key (*pk*, *sk*) is generated using *Gen*
- 2. The adversary A_1 is given pk runs A_2
- 3. A_2 outputs $M_0 = (m_0^1, m_0^2)$ and $M_1 = (m_1^1, m_1^2)$
- 4. A_1 outputs m_0^2, m_1^2
- 5. A random bit $b \leftarrow \{0,1\}$ is chosen
- 6. The ciphertext $c_2 = Enc_{pk}(m_b^2)$ is computed and given to A_1
- 7. A_1 encrypts $c_1 = Enc_{pk}(m_0^1)$ and sends (c_1, c_2) to A_2
- 8. A_1 outputs the bit b' that is output by A_2

$$\frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 0 on } \left(Enc_{pk}(\boldsymbol{m_0^1}), Enc_{pk}(\boldsymbol{m_0^2}) \right) \right] \right] \\ + \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 1 on } \left(Enc_{pk}(\boldsymbol{m_1^1}), Enc_{pk}(\boldsymbol{m_1^2}) \right) \right] \right] \right]$$

•
$$\frac{1}{2} + \varepsilon \ge \Pr[A_1 \text{ wins}]$$
 (*Enc* is ε -CPA secure)

•
$$\Pr[A_1 \text{ wins}] = \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 0 \mid b = 0] + \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 1 \mid b = 1]$$

$$= \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 0 \text{ on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_0^2)\right)\right]\right]$$

$$+ \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 1 \text{ on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_1^2)\right)\right]\right]$$

$$\leq \frac{1}{2} + \varepsilon$$

•
$$\frac{1}{2} + \varepsilon \ge \Pr[A_1 \text{ wins}]$$
 (*Enc* is ε -CPA secure)

•
$$\Pr[A_1 \text{ wins}] = \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 0 \mid b = 0] + \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 1 \mid b = 1]$$

$$= \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 0 \text{ on } \left(Enc_{pk}(m_0^1), Enc_{pk}(m_0^2)\right)\right]\right]$$

$$+ \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 1 \text{ on } \left(Enc_{pk}(m_0^1), Enc_{pk}(m_1^2)\right)\right]\right]$$

$$\leq \frac{1}{2} + \varepsilon$$

• We can do similar experiment, only changing the second encryption:

- 1. A random key (*pk*, *sk*) is generated using *Gen*
- 2. The adversary A_1 is given pk runs A_2
- 3. A_2 outputs $M_0 = (m_0^1, m_0^2)$ and $M_1 = (m_1^1, m_1^2)$
- 4. A_1 outputs m_0^1, m_1^1
- 5. A random bit $b \leftarrow \{0,1\}$ is chosen
- 6. The ciphertext $c_1 = Enc_{pk}(m_b^1)$ is computed and given to A_1
- 7. A_1 encrypts $c_2 = Enc_{pk}(m_1^2)$ and sends (c_1, c_2) to A_2
- 8. A_1 outputs the bit b' that is output by A_2

• Similarly:

•
$$\frac{1}{2} + \varepsilon \ge \Pr[A_1 \text{ wins}]$$
 (*Enc* is ε -CPA secure)

•
$$\Pr[A_1 \text{ wins}] = \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 0 \mid b = 0] + \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 1 \mid b = 1]$$

$$= \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 0 \text{ on } \left(Enc_{pk}(m_0^1), Enc_{pk}(m_1^2)\right)\right]\right]$$

$$+ \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 1 \text{ on } \left(Enc_{pk}(m_1^1), Enc_{pk}(m_1^2)\right)\right]\right]$$

$$\leq \frac{1}{2} + \varepsilon$$

• Similarly:

•
$$\frac{1}{2} + \varepsilon \ge \Pr[A_1 \text{ wins}]$$
 (*Enc* is ε -CPA secure)

•
$$\Pr[A_1 \text{ wins}] = \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 0 \mid b = 0] + \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 1 \mid b = 1]$$

$$= \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 0 \text{ on } \left(Enc_{pk}(m_0^1), Enc_{pk}(m_1^2)\right)\right]\right]$$

$$+ \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs } 1 \text{ on } \left(Enc_{pk}(m_1^1), Enc_{pk}(m_1^2)\right)\right]\right]$$

$$\leq \frac{1}{2} + \varepsilon$$

• Combine both results:

$$\frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 0 on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_0^2) \right) \right] \right] \\ + \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 1 on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_1^2) \right) \right] \right] \\ \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 0 on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_1^2) \right) \right] \right] \\ + \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 1 on } \left(Enc_{pk}(\boldsymbol{m}_1^1), Enc_{pk}(\boldsymbol{m}_1^2) \right) \right] \right] \\ \leq 1 + 2\varepsilon \right]$$

• Combine both results:

$$\frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 0 on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_0^2) \right) \right] \right] \\ + \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 1 on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_1^2) \right) \right] \right] \\ \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 0 on } \left(Enc_{pk}(\boldsymbol{m}_0^1), Enc_{pk}(\boldsymbol{m}_1^2) \right) \right] \right] \\ + \frac{1}{2} \cdot \left[\Pr\left[A_2 \text{ outputs 1 on } \left(Enc_{pk}(\boldsymbol{m}_1^1), Enc_{pk}(\boldsymbol{m}_1^2) \right) \right] \right] \\ \leq 1 + 2\varepsilon$$

→
$$\Pr[A_2 \text{ wins}] \le \frac{1}{2} + 2\varepsilon$$

Security for Multiple Encryptions – Second Method

- Let A_1 as follows:
- 1. A random key (pk, sk) is generated using Gen
- 2. The adversary A_1 is given pk runs A_2
- 3. A_2 outputs $M_0 = (m_0^1, m_0^2)$ and $M_1 = (m_1^1, m_1^2)$
- 4. A_1 chooses a random index $i \in \{1,2\}$ and outputs m_0^i, m_1^i
- 5. A random bit $b \leftarrow \{0,1\}$ is chosen
- 6. The ciphertext $c_i = Enc_{pk}(m_b^i)$ is computed and given to A_1
 - If i = 1: A_1 encrypts $c_2 = Enc_{pk}(m_1^2)$ and sends c_i, c_2 to A_2
 - If i = 2: A_1 encrypts $c_1 = Enc_{pk}(m_0^1)$ and sends c_1 , c_i to A_2
- 7. The vector $C = (c_1, c_2)$ is given to A_2
- 8. A_1 outputs the bit b' that is output by A_2

Security for Multiple Encryptions – Second Method

•
$$\frac{1}{2} + \varepsilon \ge \Pr[A_1 \text{ wins}]$$
 (*Enc* is ε -CPA secure)

•
$$\Pr[A_1 \text{ wins}] = \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 0 \mid b = 0] + \frac{1}{2} \cdot \Pr[A_1 \text{ outputs } 1 \mid b = 1]$$

- $\Pr[A_1 \text{ outputs } 0 \mid b = 0] = \Pr[A_1 \text{ outputs } 0 \mid b = 0 \land i = 1] \cdot \Pr[i = 1]$ + $\Pr[A_1 \text{ outputs } 0 \mid b = 0 \land i = 2] \cdot \Pr[i = 2]$
- $\Pr[A_1 \text{ outputs } 1 \mid b = 1] = \Pr[A_1 \text{ outputs } 1 \mid b = 1 \land i = 1] \cdot \Pr[i = 1]$ + $\Pr[A_1 \text{ outputs } 1 \mid b = 1 \land i = 2] \cdot \Pr[i = 2]$

- How do we generalize this method to t encryptions?
- For a given public key pk and two vectors $M_0 = (m_0^1, \dots, m_0^t)$ and $M_1 = (m_1^1, \dots, m_1^t)$ (the output of A_{mult})

• Define
$$C^{i} = \left(Enc_{pk}(m_{0}^{1}), \dots, Enc_{pk}(m_{0}^{i}), Enc_{pk}(m_{1}^{i+1}), \dots, Enc_{pk}(m_{1}^{t}) \right)$$

- Let A_t as follows:
- 1. A random key (*pk*, *sk*) is generated using *Gen*
- 2. The adversary A_t is given pk and outputs a pair of vectors

$$M_0 = (m_0^1, \dots, m_0^t)$$
 and $M_1 = (m_1^1, \dots, m_1^t)$, where $\forall i. |m_0^i| = |m_1^i|$

3. A random bit $b \leftarrow \{0,1\}$ is chosen

4. The vector
$$C = \left(Enc_{pk}(m_b^1), \dots, Enc_{pk}(m_b^t)\right)$$
 is given to A_t

5. A_t outputs a bit b'

• We'll prove:
$$\Pr[A_t \text{ wins}] \leq \frac{1}{2} + \varepsilon_t$$

Security for Multiple (t) Encryptions – Second Method

- Let A_1 as follows:
- 1. A random key (*pk*, *sk*) is generated using *Gen*
- 2. The adversary A_1 is given pk runs A_t
- 3. A_t outputs $M_0 = (m_0^1, ..., m_0^t)$ and $M_1 = (m_1^1, ..., m_1^t)$
- 4. A_1 chooses a random index $i \in \{1, ..., t\}$ and outputs m_0^i, m_1^i
- 5. A random bit $b \leftarrow \{0,1\}$ is chosen
- 6. The ciphertext $c_i = Enc_{pk}(m_b^i)$ is computed and given to A_1
 - For $j < i: A_1$ encrypts $c_j = Enc_{pk}(m_0^j)$
 - For j > i: A_1 encrypts $c_j = Enc_{pk}(m_1^j)$
- 7. The vector $C = (c_1, \dots, c_i, \dots, c_t)$ is given to A_t
- 8. A_1 outputs the bit b' that is output by A_t

Image from: http://slideplayer.com/slide/236532/

Definition. A PKE scheme (*Gen*, *Enc*, *Dec*) is (partially) **homomorphic** if for all pk, sk and for all m_1 , c_1 , m_2 , c_2 :

$$m_1 = Dec_{sk}(c_1)$$
 and $m_2 = Dec_{sk}(c_2)$

$$Dec_{sk}(c_1 \widetilde{\odot} c_2) = m_1 \odot m_2$$

- El Gamal PKE scheme:
- $pk = (G, q, g, g^x = h)$
- sk = x
- $Enc_{pk}(m_1) = (g^y, h^y \cdot m_1) = c_1$
- $Enc_{pk}(m_2) = (g^{y'}, h^{y'} \cdot m_2) = c_2$

•
$$\Rightarrow c_1 \cdot c_2 = \left(g^{y+y'}, h^{y+y'} \cdot (m_1 m_2)\right)$$

• $\Rightarrow Dec_{sk}(c_1 \cdot c_2) = m_1 m_2$

- El Gamal PKE scheme:
- $pk = (G, q, g, g^x = h)$
- sk = x
- $Enc_{pk}(m_1) = (g^y, h^y \cdot m_1) = c_1$
- $Enc_{pk}(m_2) = (g^{y'}, h^{y'} \cdot m_2) = c_2$

•
$$\Rightarrow c_1 \cdot c_2 = \left(g^{y+y'}, h^{y+y'} \cdot (m_1 m_2)\right)$$

• $\Rightarrow Dec_{sk}(c_1 \cdot c_2) = m_1 m_2$