Introduction to Modern Cryptography
Recitation 4

Orit Moskovich

Tel Aviv University
November 23, 2016

R RRRRRRREREEEREEEEEmmwmmmmm
One Way Function (OWF)

4)

Definition. A function f:{0,1}"* — {0,1}™ is a £-one way function
(e-OWF) if for any polynomial time adversary A:

Pr [A(f(x)) = x] <é&

x<{0,1}"

= /

e What if f is not one-to-one?
« Whatis €7

R RRRRRRRRRRRRRRRRRRERDRDDIRIIIREW
DL = OWF

Definition. The discrete logarithm problem:
Let G be a cyclic group of order |G| = m and a generator g € G.
Given: h = g* forx € Z,,, = {0, ..., m — 1}

\Output: x such that g* = h

-
Definition. The discrete logarithm assumption:

There exists a cyclic group G for which the DL problem is hard

- J

VAN

* Let p be a prime and a generator g € Z,, (in which DL is hard)
* Define the OWF: f(x) = g* mod p

Hard-Core Predicates

e Motivation:
s A OWF f is hard to invert
= Given f(x), the value of x is hard to discover
s However, a OWF f may disclose some information about its input

* Example:
o Let f be a OWF

o Define g(x1,x,) = (f (x1), x2)
= g is also a OWF, and in the same time reveals x, completely

Hard-Core Predicates

g ™
Claim. If f:{0,1}" - {0,1}™ is a OWF, then g:{0,1}"*1 - {0,1}"*1
g(x1,%3) = (f(x1),x,) is also a OWF

- Y,
e Assume g is not a OWF
* Then, there exist an efficient adversary A, such that

xle{o,l}arxze{og}[Ag (g(xbxz)) = Xl,xz] > £
» We'll construct an efficient adversary Ay that inverts f w.p. > ¢
\

‘, .

1. The adversary Ay is given f(x)
2. Agf chooses at random u’ « U,
3. Agruns Ag((f(x), u’)) and returns the first n bits of the output N

Hard-Core Predicates

A hard-core predicate of a function f is:
= A function hc: {0,1}"* — {0,1} such that:

= Given f(x) it is hard to guess hc(x) w.p. > % + &

4)

Definition. A polynomial-time computable predicate hc:{0,1}" — {0,1}
is called a hard-core of a function f if for every PPT algorithm A:

1
xeg)r:l}n[A(f(x)) — hC(x)] < E + e

o J

e hc(x) is called the hard core bit (HCB) c

Hard-Core Predicates

4)

Definition. A polynomial-time computable predicate hc:{0,1}" — {0,1}
is called a hard-core of a function f if for every PPT algorithm A:

P A(fG)) = he()] <
\ J

4)
Equivalent Definition. A polynomial-time computable predicate

hc:{0,1}* — {0,1} is called a hard-core of a function f if

. f(Un), he(Up) =ce f(Un), Uy)

Hard-Core Predicates

« We’ll show one direction:

f(U) hC(Un) zcez f(U) Ul

for every PPT algorithm A, %r1 n[A(f(x)) hc(x)]

e Assume there exists a PPT algorlthm A such that
b 1}n[A1(f(x)) hc(x)] > = + £
o Construct the following PPT A,

1. A, isgiven (u, b) (either from (f(Un), hc(Un)) or (f(U,,),U,))
2. A,returnsl <= A, (u) =b

Hard-Core Predicates

e Construct the following PPT A,

{J. A, is given (u, b) (either from (f(Uy), hc(Uy,)) or (f(Uy), Uy)) }

2. A,returnsl <= A, (u) =b

e Let’s analyze the result:

° Pr A,(dy) = 1| — Pr A (d{) =1|| > ¢
do‘_f(Un)»hC(Un)[2(O)] dl‘_f(Un);Ul[2(1)]
1 1

Hard-Core Predicates

Let’s try hc(x) =P, x; where x = x1x5 ... X,
Is this @ HCP for every OWF function f?
= No!

e Let f be a OWF
e Define g(x) = (f (x),D;=; x;)

e g is also a OWF, and at the same time reveals hc(x) completely

10

Goldreich-Levin Theorem

* Every OWF can be trivially modified to obtain a OWF that has a specific
hard-core predicate

11

R RRRRRRRRRRRRRRRRRRERDRDDIRIIIREW
OWP = PRG

4)

Theorem. Let f:{0,1}" — {0,1}" be a OWP and let hc be a hard-core
predicate of f.

Define G: {0,1}" - {0,1}"*! as follows: G(s) = (f(s), hc(s)).
Then, G is a PRG.

o /

12

EEEEEEEEE——————-.;
Reminder: DL = OWF

* Let p be a prime and a generator g € Z,, (in which DL is hard)
* Define the OWF: f(x) = g¥ mod p

13

————.(|
HCB for: DL = OWF

Let p be a prime and a generator g € Z,, (in which DL is hard)
Define the OWF: f(x) = g* mod p

e First attempt:
e hc(x) = parity(x) = x mod 2
 We will prove in HW that this function is not a HCP

e Blum-Micali (without proof):
L xefur]

0 otherwise

* Define Half (x) =

14

Bit Commitment

* A two party protocol between computationally bound Alice and Bob

e Alice commits to a bit b (which she is chooses)
» Bob cannot tell what b is after the commitment phase

» At a decommit phase, Alice reveals b, and Bob is convinced this is
indeed the bit Alice committed to

Alice Bob 15

Bit Commitment

* A two party protocol between computationally bound Alice and Bob

e Alice commits to a bit b (which she is chooses)
» Bob cannot tell what b is after the commitment phase

» At a decommit phase, Alice reveals b, and Bob is convinced this is
indeed the bit Alice committed to

o Alice cannot convince Bob she committed to b

Alice Bob 16

Bit Commitment

e Commit Stage: Alice Bob
= The sender S (Alice) has private input o € {0,1}
= § chooses a private random input r
= § sends to the receiver R (Bob) the commitment C (o, 1)
e Decommit Stage:
o Ssends o, rto R
° R either accepts or rejects

» Hiding property: Voy,0, € {0,1}.C(0y,7) =, C(0,,7)
e Binding property: 40y,11,0,,1, s.t C(oq,11) = C(0y,1,) and o * 0,

17

EEEEEEEEE——————-.;
OWP = Bit Commitment

e Let :{0,1}" — {0,1}"* be a OWP with a HCP hc:{0,1}" — {0,1}

e Commit Stage:

= The sender S has private input g € {0,1}

= S chooses a private random input r « {0,1}"

= S sends to the receiver R the commitment C(o,r) = (f(r), hc(r) @ o)
e Decommit Stage:

o Ssendso,rto R

> R verifies the correctness either accepts or rejects

v'Binding property: A0y,11, 05,17, s.t C(04,11) = C(0,,1,) and 0, # 0,
v'Hiding property: Voy,0, € {0,1}. C(01,7) =, C(03,7)

18

EEEEEEEEE——————-.;
OWP = Bit Commitment

e Let :{0,1}" — {0,1}"* be a OWP with a HCP hc:{0,1}" — {0,1}

e Commit Stage:

= The sender S has private input g € {0,1}

= S chooses a private random input r « {0,1}"

= S sends to the receiver R the commitment C(o,r) = (f(r), hc(r) @ o)
e Decommit Stage:

o Ssendso,rto R
= R verifies the correctness either accepts or rejects

v'Binding property: A0y,11, 05,17, s.t C(04,11) = C(0,,1,) and 0, # 0,)
v'Hiding property: Voy,0, € {0,1}. C(01,7) =, C(03,7)

19

Coin Flipping Over the Phone

e Let :{0,1}" — {0,1}"* be a OWP with a HCP hc:{0,1}" — {0,1}
e Let C(x,r) = (f(r), hc(r) © x)

1. Alice chooses a random bit x and sends C(x, 1)

—>
2. Bob chooses a random bit x’ and send it to Alice @
< -y

Alice

3. Alice sends x, r

The outcome of the coin flip is x @ x'
20

