Introduction to Modern Cryptography Recitation 4

Orit Moskovich Tel Aviv University November 23, 2016

One Way Function (OWF)

Definition. A function $f: \{0,1\}^n \to \{0,1\}^m$ is a ε -one way function (ε -OWF) if for any polynomial time adversary A: $\Pr_{x \leftarrow \{0,1\}^n} [A(f(x)) = x] < \varepsilon$

- What if *f* is not one-to-one?
- What is ϵ ?

<u>DL</u> → OWF

Definition. The discrete logarithm problem: Let G be a cyclic group of order |G| = m and a generator $g \in G$. <u>Given:</u> $h = g^x$ for $x \in \mathbb{Z}_m = \{0, ..., m - 1\}$ <u>Output:</u> x such that $g^x = h$

Definition. The discrete logarithm assumption: There exists a cyclic group G for which the DL problem is <u>hard</u>

• Let p be a prime and a generator $g \in \mathbb{Z}_p^*$ (in which DL is hard)

• Define the OWF:
$$f(x) = g^x \mod p$$

- Motivation:
 - A OWF f is hard to invert
 - Given f(x), the value of x is hard to discover
 - However, a OWF f may disclose some information about its input
- Example:
 - Let f be a OWF
 - Define $g(x_1, x_2) = (f(x_1), x_2)$
 - g is also a OWF, and in the same time reveals x_2 completely

Claim. If $f: \{0,1\}^n \to \{0,1\}^n$ is a OWF, then $g: \{0,1\}^{n+1} \to \{0,1\}^{n+1}$ $g(x_1, x_2) = (f(x_1), x_2)$ is also a OWF

- Assume *g* is not a OWF
- Then, there exist an efficient adversary A_g such that $\Pr_{x_1 \leftarrow \{0,1\}^n, x_2 \leftarrow \{0,1\}} \left[A_g(g(x_1, x_2)) = x_1, x_2 \right] > \varepsilon$
- We'll construct an efficient adversary A_f that inverts f w.p. > ε
- 1. The adversary A_f is given f(x)
- 2. A_f chooses at random $u' \leftarrow U_1$
- 3. A_f runs $A_g((f(x), u'))$ and returns the first *n* bits of the output

- A hard-core predicate of a function *f* is:
 - A function $hc: \{0,1\}^n \rightarrow \{0,1\}$ such that:
 - Given f(x) it is hard to guess hc(x) w.p. $> \frac{1}{2} + \varepsilon$

Definition. A polynomial-time computable predicate $hc: \{0,1\}^n \to \{0,1\}$ is called a hard-core of a function f if for every PPT algorithm A: $\Pr_{x \leftarrow \{0,1\}^n} [A(f(x)) = hc(x)] \leq \frac{1}{2} + \varepsilon$

• hc(x) is called the hard core bit (HCB)

Definition. A polynomial-time computable predicate $hc: \{0,1\}^n \rightarrow \{0,1\}$ is called a hard-core of a function f if for every PPT algorithm A:

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(f(x)) = hc(x) \right] \le \frac{1}{2} + \varepsilon$$

Equivalent Definition. A polynomial-time computable predicate $hc: \{0,1\}^n \rightarrow \{0,1\}$ is called a hard-core of a function f if $f(U_n), hc(U_n) \approx_{c,\varepsilon} f(U_n), U_1$

- We'll show one direction: $f(U_n), hc(U_n) \approx_{c,\varepsilon} f(U_n), U_1 \rightarrow$ for every PPT algorithm A, $\Pr_{x \leftarrow \{0,1\}^n} [A(f(x)) = hc(x)] \leq \frac{1}{2} + \varepsilon$
- Assume there exists a PPT algorithm A_1 such that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A_1(f(x)) = hc(x) \right] > \frac{1}{2} + \varepsilon$$

• Construct the following PPT A_2

1. A_2 is given (u, b) (either from $(f(U_n), hc(U_n))$ or $(f(U_n), U_1)$) 2. A_2 returns $1 \Leftrightarrow A_1(u) = b$

• Construct the following PPT A_2

1. A_2 is given (u, b) (either from $(f(U_n), hc(U_n))$ or $(f(U_n), U_1)$) 2. A_2 returns $1 \Leftrightarrow A_1(u) = b$

• Let's analyze the result:

•
$$\left| \Pr_{\substack{d_0 \leftarrow f(U_n), hc(U_n)}} [A_2(d_0) = 1] - \Pr_{\substack{d_1 \leftarrow f(U_n), U_1}} [A_2(d_1) = 1] \right| > \varepsilon$$
$$= \frac{1}{2}$$

- Let's try $hc(x) = \bigoplus_{i=1}^{n} x_i$ where $x = x_1 x_2 \dots x_n$
- Is this a HCP for every OWF function *f*?

No!

- Let *f* be a OWF
- Define $g(x) = (f(x), \bigoplus_{i=1}^{n} x_i)$
- g is also a OWF, and at the same time reveals hc(x) completely

Goldreich-Levin Theorem

• Every OWF can be trivially modified to obtain a OWF that has a specific hard-core predicate

Theorem. Let $f: \{0,1\}^n \to \{0,1\}^n$ be a OWP and let hc be a hard-core predicate of f. Define $G: \{0,1\}^n \to \{0,1\}^{n+1}$ as follows: G(s) = (f(s), hc(s)). Then, G is a PRG.

- Let p be a prime and a generator $g \in \mathbb{Z}_p^*$ (in which DL is hard)
- Define the OWF: $f(x) = g^x \mod p$

<u>HCB for: DL → OWF</u>

- Let p be a prime and a generator $g \in \mathbb{Z}_p^*$ (in which DL is hard)
- Define the OWF: $f(x) = g^x \mod p$
- First attempt:
- $hc(x) = parity(x) = x \mod 2$
- We will prove in HW that this function is not a HCP
- Blum-Micali (without proof):

• Define
$$Half(x) = \begin{cases} 1 & x \in \left[1, \frac{p-1}{2}\right] \\ 0 & \text{otherwise} \end{cases}$$

Bit Commitment

- A two party protocol between computationally bound Alice and Bob
- Alice **commits** to a bit *b* (which she is chooses)
- Bob cannot tell what *b* is after the commitment phase
- At a decommit phase, Alice **reveals** *b*, and Bob is convinced this is indeed the bit Alice committed to

Bit Commitment

- A two party protocol between computationally bound Alice and Bob
- Alice **commits** to a bit *b* (which she is chooses)
- Bob cannot tell what *b* is after the commitment phase
- At a decommit phase, Alice **reveals** *b*, and Bob is convinced this is indeed the bit Alice committed to
- Alice cannot convince Bob she committed to \overline{b}

Bit Commitment

- Commit Stage:
 - Alice $\sigma \in \{0,1\}$ Alice
 - S chooses a private random input r
 - S sends to the receiver R (Bob) the commitment $C(\sigma, r)$
- Decommit Stage:
 - S sends σ, r to R
 - R either accepts or rejects
- Hiding property: $\forall \sigma_1, \sigma_2 \in \{0,1\}$. $C(\sigma_1, r) \approx_{\varepsilon} C(\sigma_2, r)$
- Binding property: $\nexists \sigma_1, r_1, \sigma_2, r_2$ s.t $C(\sigma_1, r_1) = C(\sigma_2, r_2)$ and $\sigma_1 \neq \sigma_2$

Bob

OWP → Bit Commitment

- Let $f: \{0,1\}^n \to \{0,1\}^n$ be a OWP with a HCP $hc: \{0,1\}^n \to \{0,1\}$
- Commit Stage:
 - The sender S has private input $\sigma \in \{0,1\}$
 - S chooses a private random input $r \leftarrow \{0,1\}^n$
 - S sends to the receiver R the commitment $C(\sigma, r) = (f(r), hc(r) \oplus \sigma)$
- Decommit Stage:
 - S sends σ , r to R
 - R verifies the correctness either accepts or rejects

✓ Binding property: $\nexists \sigma_1, r_1, \sigma_2, r_2$ s.t $C(\sigma_1, r_1) = C(\sigma_2, r_2)$ and $\sigma_1 \neq \sigma_2$ ✓ Hiding property: $\forall \sigma_1, \sigma_2 \in \{0,1\}$. $C(\sigma_1, r) \approx_{c, \varepsilon} C(\sigma_2, r)$

OWP → Bit Commitment

- Let $f: \{0,1\}^n \rightarrow \{0,1\}^n$ be a OWP with a HCP $hc: \{0,1\}^n \rightarrow \{0,1\}$
- Commit Stage:
 - The sender S has private input $\sigma \in \{0,1\}$
 - S chooses a private random input $r \leftarrow \{0,1\}^n$
 - S sends to the receiver R the commitment $C(\sigma, r) = (f(r), hc(r) \oplus \sigma)$
- Decommit Stage:
 - *S* sends σ , *r* to *R*
 - R verifies the correctness either accepts or rejects

✓ Binding property: $\exists \sigma_1, r_1, \sigma_2, r_2$ s.t $C(\sigma_1, r_1) = C(\sigma_2, r_2)$ and $\sigma_1 \neq \sigma_2$ ✓ Hiding property: $\forall \sigma_1, \sigma_2 \in \{0,1\}$. $C(\sigma_1, r) \approx_{c, \varepsilon} C(\sigma_2, r)$

tradeoff

19

Coin Flipping Over the Phone

• Let $f: \{0,1\}^n \to \{0,1\}^n$ be a OWP with a HCP $hc: \{0,1\}^n \to \{0,1\}$ • Let $C(x,r) = (f(r), hc(r) \bigoplus x)$

1. Alice chooses a random bit x and sends C(x, r)

2. Bob chooses a random bit x' and send it to Alice

3. Alice sends *x*, *r*

The outcome of the coin flip is $x \oplus x'$