
Orit Moskovich

Tel Aviv University 

January 25, 2017

Introduction to Modern Cryptography
Recitation 13

1



2

Example 1

• Let 𝑓1, 𝑓2 be OWFs

• Is 𝐹 𝑥 = 𝑓1 𝑥 , 𝑓2 𝑥 necessarily a OWF?

• No!

• Let 𝑔 be a OWF, and define 𝑓1 𝑥1, 𝑥2 = 𝑔 𝑥1 , 𝑥2 𝑓1 is a OWF

• Similarly, 𝑓2 𝑥1, 𝑥2 = 𝑥1, 𝑔(𝑥2) 𝑓2 is a OWF

• 𝐹 𝑥 = 𝐹 𝑥1, 𝑥2 = 𝑓1 𝑥 , 𝑓2 𝑥 = 𝑔 𝑥1 , 𝑥2, 𝑥1, 𝑔 𝑥2  not a OWF

• Still need to prove why 𝑓1, 𝑓2 are OWFs



3

Example 2

• Consider the following key-exchange protocol:
▫ Alice chooses 𝑘, 𝑟 ← 0,1 𝑛 at random, and sends 𝑠 ≔ 𝑘 ⊕ 𝑟 to Bob

▫ Bob chooses 𝑡 ← 0,1 𝑛 at random and sends 𝑢 ≔ 𝑠 ⊕ 𝑡 to Alice

▫ Alice computes 𝑤 ≔ 𝑢⊕ 𝑟 and sends 𝑤 to Bob

▫ Alice outputs 𝑘 and Bob computes 𝑤⊕ 𝑡

a) Show that Alice and Bob output the same key

b) Show that the scheme is not secure
(Reminder) Secrecy: Given the public information and all the 
communication exchanged during the execution of the protocol, 
computing the shared key is computationally hard.



4

Example 2

• Alice outputs 𝑘

• Bob outputs:

𝑤⊕ 𝑡 = 𝑢 ⊕ 𝑟 ⊕ 𝑡 = 𝑠 ⊕ 𝑡 ⊕ 𝑟 ⊕ 𝑡 =

𝑘 ⊕ 𝑟 ⊕ 𝑡 ⊕ 𝑟 ⊕ 𝑡 = 𝑘



5

Example 2

• The scheme is not secure.

• Given a transcript (𝑠, 𝑢, 𝑤) of the protocol, an adversary can compute:
𝑠 ⊕ 𝑢 ⊕𝑤 = 𝑘 ⊕ 𝑟 ⊕ 𝑢⊕ 𝑢⊕ 𝑟 = 𝑘



6

Example 3



7

Example 3

• Menachem can choose a random 𝑘 ≠ 0,1, 𝑘 ∈ 𝑍𝑁
• He can send 𝑘3 ⋅ 𝑟𝐴

3 𝑚𝑜𝑑 𝑀 to Shlomo

• Shifra sends 𝑘3 𝑚𝑜𝑑 𝑁 to Shlomo

• Shlomo sends back 𝑘 ⋅ 𝑟𝐴 + 𝑘 from which it is easy to compute 𝑟𝐴



8

Example 4

• A Sudoku game is a 𝑛 × 𝑛 board partially filled out with numbers 1…𝑛

• The goal is to fill out the rest of the board with numbers 1…𝑛 such that 
every row, column and the sub-boxes all have exactly one of each digit in 
them



9

Example 4

• Consider the following ZK proof between a prover 𝑃 that holds a solution 
𝑆𝑜𝑙 to a verifier 𝑉:

a) Show soundness and completeness

1. 𝑃 → 𝑉: Chooses a random permutation 𝜎: 𝑛 → [𝑛] and sends to 𝑉

a commitment 𝑐 = 𝐶𝑂𝑀 𝜎 𝑆𝑜𝑙

2. 𝑉 → 𝑃: Picks at random row/column/sub-box
3. 𝑃 → 𝑉: Reveals the commitment to the cells
4. 𝑉 accepts iff the values of the cells are different



10

Example 4

• Consider better ZK proof between a prover 𝑃 that holds a solution 𝑆𝑜𝑙 to a 
verifier 𝑉:

b) Show soundness and completeness

1. 𝑃 → 𝑉: Chooses a random permutation 𝜎: 𝑛 → [𝑛] and sends to 𝑉 a 

commitment 𝑐 = 𝐶𝑂𝑀 𝜎 𝑆𝑜𝑙

2. 𝑉 → 𝑃: Flips a coin 𝑏 ∈ 0,1
𝑏 = 0 Picks at random row/column/sub-box
𝑏 = 1 Asks for the commitment to the known values on the board

3. 𝑃 → 𝑉: Reveals the requested commitment
4. 𝑉 accepts iff the values of the cells are different/a valid permutation



11

Example 4

• Consider better ZK proof between a prover 𝑃 that holds a solution 𝑆𝑜𝑙 to a 
verifier 𝑉:

c) Show a simulator

1. 𝑃 → 𝑉: Chooses a random permutation 𝜎: 𝑛 → [𝑛] and sends to 𝑉 a 

commitment 𝑐 = 𝐶𝑂𝑀 𝜎 𝑆𝑜𝑙

2. 𝑉 → 𝑃: Flips a coin 𝑏 ∈ 0,1
𝑏 = 0 Picks at random row/column/sub-box
𝑏 = 1 Asks for the commitment to the known values on the board

3. 𝑃 → 𝑉: Reveals the requested commitment
4. 𝑉 accepts iff the values of the cells are different/a valid permutation



12

Example 5

• Let 𝐶𝑂𝑀1, 𝐶𝑂𝑀2 be two commitment schemes

• Both schemes are binding

• However, one of them is not hiding

• To solve the problem, one constructed a new commitment scheme:

• 𝐶𝑂𝑀 𝑀 = 𝐶𝑂𝑀1 𝑀 ,𝐶𝑂𝑀2(𝑀)

• Is 𝐶𝑂𝑀 secure?

• No!

• Let 𝐶𝑂𝑀1 𝑀 = 𝑀 and 𝐶𝑂𝑀2 some secure (hiding, binding) scheme

• 𝐶𝑂𝑀 𝑀 = 𝑀, 𝐶𝑂𝑀2(𝑀) not hiding



13

Example 6

• Let 𝑝 = 3 𝑚𝑜𝑑 4 prime

• Let 𝑎 ∈ 𝑄𝑅(𝑍𝑃
∗)

• Show that 𝑎
𝑝+1

4 is a square root of 𝑎

• Let 𝑔 be a generator, 𝑎 = 𝑔2𝑖 𝑚𝑜𝑑 𝑝

• 𝑎
𝑝+1

4

2

= 𝑎
𝑝+1

2 = 𝑔
2𝑖

𝑝+1

2 = 𝑔𝑖 𝑝−1 +2𝑖 = 𝑔2𝑖 = 𝑎 𝑚𝑜𝑑 𝑝

• Finding a square root over 𝑍𝑝
∗ is easy for any prime 𝑝



14

Example 7

• Let 𝑝 = 3 𝑚𝑜𝑑 4 prime

• Let 𝑔 be a generator in 𝑍𝑝
∗

• Define the following problems:
▫ Mult: given (𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦)  compute 𝑔𝑥𝑦

▫ Square: given (𝑝, 𝑔, 𝑔𝑥)  compute 𝑔𝑥
2

• Let 𝐴𝑚𝑢𝑙𝑡 be an algorithm that given (𝑝, 𝑔, 𝑔𝑥 , 𝑔𝑦) returns 𝑔𝑥𝑦 w.p 1

• Show an algorithm 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 that given (𝑝, 𝑔, 𝑔𝑥) returns 𝑔𝑥
2

w.p 1



15

Example 7

• Let 𝑝 = 3 𝑚𝑜𝑑 4 prime

• Let 𝑔 be a generator in 𝑍𝑝
∗

• Define the following problems:
▫ Mult: given (𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦)  compute 𝑔𝑥𝑦

▫ Square: given (𝑝, 𝑔, 𝑔𝑥)  compute 𝑔𝑥
2

• 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 that is given (𝑝, 𝑔, 𝑔𝑥):

1. Run 𝐴𝑚𝑢𝑙𝑡 on (𝑝, 𝑔, 𝑔𝑥, 𝑔𝑥) and get 𝑔𝑥⋅𝑥 = 𝑔𝑥
2
𝑚𝑜𝑑 𝑝



16

Example 7

• Let 𝑝 = 3 𝑚𝑜𝑑 4 prime

• Let 𝑔 be a generator in 𝑍𝑝
∗

• Define the following problems:
▫ Mult: given (𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦)  compute 𝑔𝑥𝑦

▫ Square: given (𝑝, 𝑔, 𝑔𝑥)  compute 𝑔𝑥
2

• Let 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 be an algorithm that given (𝑝, 𝑔, 𝑔𝑥) returns 𝑔𝑥
2

w.p 1

• Show an algorithm 𝐴𝑚𝑢𝑙𝑡 that given (𝑝, 𝑔, 𝑔𝑥 , 𝑔𝑦) returns 𝑔𝑥𝑦 w.p 1



17

Example 7
• Let 𝑝 = 3 𝑚𝑜𝑑 4 prime
• Let 𝑔 be a generator in 𝑍𝑝

∗

• Define the following problems:
▫ Mult: given (𝑝, 𝑔, 𝑔𝑥, 𝑔𝑦)  compute 𝑔𝑥𝑦

▫ Square: given (𝑝, 𝑔, 𝑔𝑥)  compute 𝑔𝑥
2

• 𝐴𝑚𝑢𝑙𝑡 that is given (𝑝, 𝑔, 𝑔𝑥 , 𝑔𝑦):
1. Run 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 on (𝑝, 𝑔, 𝑔𝑥) and get 𝑔𝑥

2
𝑚𝑜𝑑 𝑝

2. Run 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 on (𝑝, 𝑔, 𝑔𝑦) and get 𝑔𝑦
2
𝑚𝑜𝑑 𝑝

3. Run 𝐴𝑠𝑞𝑢𝑎𝑟𝑒 on (𝑝, 𝑔, 𝑔𝑥+𝑦) and get 𝑔(𝑥+𝑦)
2
𝑚𝑜𝑑 𝑝

4. Compute 
𝑔(𝑥+𝑦)

2

𝑔𝑥
2
⋅𝑔𝑦

2 = 𝑔2𝑥𝑦 and find its square root


