Introduction to Modern Cryptography Recitation 13

Orit Moskovich Tel Aviv University January 25, 2017

- Let f_1 , f_2 be OWFs
- Is $F(x) = (f_1(x), f_2(x))$ necessarily a OWF?
- No!
- Let g be a OWF, and define $f_1(x_1, x_2) = g(x_1), x_2 \rightarrow f_1$ is a OWF
- Similarly, $f_2(x_1, x_2) = x_1, g(x_2) \to f_2$ is a OWF
- $F(x) = F(x_1, x_2) = (f_1(x), f_2(x)) = (g(x_1), x_2, x_1, g(x_2)) \rightarrow \text{not a OWF}$
- Still need to prove why f_1 , f_2 are OWFs

- Consider the following key-exchange protocol:
 - Alice chooses $k, r \leftarrow \{0,1\}^n$ at random, and sends $s \coloneqq k \oplus r$ to Bob
 - □ Bob chooses $t \leftarrow \{0,1\}^n$ at random and sends $u \coloneqq s \oplus t$ to Alice
 - Alice computes $w \coloneqq u \oplus r$ and sends w to Bob
 - Alice outputs k and Bob computes $w \oplus t$
- a) Show that Alice and Bob output the same key
- b) Show that the scheme is not secure (Reminder) Secrecy: Given the public information and all the communication exchanged during the execution of the protocol, computing the shared key is computationally hard.

- Alice outputs k
- Bob outputs:

$$w \oplus t = (u \oplus r) \oplus t = ((s \oplus t) \oplus r) \oplus t = ((k \oplus r) \oplus t) \oplus r) \oplus t = k$$

- The scheme is not secure.
- Given a transcript (s, u, w) of the protocol, an adversary can compute:

$$s \oplus u \oplus w = (k \oplus r) \oplus u \oplus (u \oplus r) = k$$

כדי להבטיח הגנה מלאה למשתמשים, שלמה שומר אצלו מאגר ביומטרי עם כל השאילתות שנשלחו אליו $r_A^3 \bmod N$ אי פעם ומסרב לענות פעמיים על אותה שאילתה (כלומר: אם, למשל, שולחים אליו את $r_A^3 \bmod N$ פעם נוספת, הוא מחזיר שגיאה).

מנחם המאזין שמע את r_A^3 ואת ורוצה לחשב את K. הסבירו כיצד הוא ושותפתו למזימה, שפרה, יכולים לנצל את שלמה למטרה זו.

- Menachem can choose a random $k \neq 0,1, k \in \mathbb{Z}_N$
- He can send $k^3 \cdot r_A^3 \mod M$ to Shlomo
- Shifra sends $k^3 \mod N$ to Shlomo
- Shlomo sends back $k \cdot r_A + k$ from which it is easy to compute r_A

• A Sudoku game is a $n \times n$ board partially filled out with numbers $1 \dots n$

	9			8		4		
		2		4	1			5
3							6	
	1							
7	6			2			1	9
							8	
	2							8
5			2	9		3		
		4		5			2	

• The goal is to fill out the rest of the board with numbers $1 \dots n$ such that every row, column and the sub-boxes all have exactly one of each digit in them

 Consider the following ZK proof between a prover P that holds a solution Sol to a verifier V:

- 1. $P \rightarrow V$: Chooses a random permutation $\sigma: [n] \rightarrow [n]$ and sends to V a commitment $c = COM(\sigma(Sol))$
- 2. $V \rightarrow P$: Picks at random row/column/sub-box
- 3. $P \rightarrow V$: Reveals the commitment to the cells
- 4. V accepts iff the values of the cells are different
- a) Show soundness and completeness

- Consider better ZK proof between a prover P that holds a solution Sol to a verifier V:
 - 1. $P \rightarrow V$: Chooses a random permutation $\sigma: [n] \rightarrow [n]$ and sends to V a commitment $c = COM(\sigma(Sol))$
 - 2. $V \rightarrow P$: Flips a coin $b \in \{0,1\}$
 - $b = 0 \rightarrow$ Picks at random row/column/sub-box
 - b=1 Asks for the commitment to the known values on the board
 - 3. $P \rightarrow V$: Reveals the requested commitment
 - 4. V accepts iff the values of the cells are different/a valid permutation
- b) Show soundness and completeness

- Consider better ZK proof between a prover P that holds a solution Sol to a verifier V:
 - 1. $P \rightarrow V$: Chooses a random permutation $\sigma: [n] \rightarrow [n]$ and sends to V a commitment $c = COM(\sigma(Sol))$
 - 2. $V \rightarrow P$: Flips a coin $b \in \{0,1\}$
 - $b = 0 \rightarrow$ Picks at random row/column/sub-box
 - b=1 Asks for the commitment to the known values on the board
 - 3. $P \rightarrow V$: Reveals the requested commitment
 - 4. V accepts iff the values of the cells are different/a valid permutation
- c) Show a simulator

- Let COM_1 , COM_2 be two commitment schemes
- Both schemes are binding
- However, one of them is not <u>hiding</u>
- To solve the problem, one constructed a new commitment scheme:
- $COM(M) = COM_1(M), COM_2(M)$
- Is *COM* secure?
- No!
- Let $COM_1(M) = M$ and COM_2 some secure (hiding, binding) scheme
- $COM(M) = M, COM_2(M) \rightarrow$ not hiding

- Let $p = 3 \mod 4$ prime
- Let $a \in QR(Z_P^*)$
- Show that $a^{\frac{p+1}{4}}$ is a square root of a
- Let g be a generator, $a = g^{2i} \mod p$

•
$$\left(a^{\frac{p+1}{4}}\right)^2 = a^{\frac{p+1}{2}} = g^{2i\left(\frac{p+1}{2}\right)} = g^{i(p-1)+2i} = g^{2i} = a \mod p$$

• Finding a square root over Z_p^st is easy for any prime p

- Let $p = 3 \mod 4$ prime
- Let g be a generator in Z_p^st
- Define the following problems:
 - Mult: given (p, g, g^x, g^y) \rightarrow compute g^{xy}
 - Square: given (p, g, g^x) → compute g^{x^2}
- Let A_{mult} be an algorithm that given (p, g, g^x, g^y) returns g^{xy} w.p 1
- Show an algorithm A_{square} that given (p, g, g^x) returns g^{x^2} w.p 1

- Let $p = 3 \mod 4$ prime
- Let g be a generator in Z_p^st
- Define the following problems:
 - Mult: given (p, g, g^x, g^y) \rightarrow compute g^{xy}
 - Square: given (p, g, g^x) → compute g^{x^2}
- A_{square} that is given (p, g, g^x) :
 - 1. Run A_{mult} on (p, g, g^x, g^x) and get $g^{x \cdot x} = g^{x^2} \mod p$

- Let $p = 3 \mod 4$ prime
- Let g be a generator in Z_p^st
- Define the following problems:
 - Mult: given (p, g, g^x, g^y) \rightarrow compute g^{xy}
 - Square: given (p, g, g^x) → compute g^{x^2}
- Let A_{square} be an algorithm that given (p, g, g^x) returns g^{x^2} w.p 1
- Show an algorithm A_{mult} that given (p, g, g^x, g^y) returns g^{xy} w.p 1

- Let $p = 3 \mod 4$ prime
- Let g be a generator in Z_p^st
- Define the following problems:
 - Mult: given (p, g, g^x, g^y) \rightarrow compute g^{xy}
 - Square: given (p, g, g^x) → compute g^{x^2}
- A_{mult} that is given (p, g, g^x, g^y) :
 - 1. Run A_{square} on (p, g, g^x) and get $g^{x^2} \mod p$
 - 2. Run A_{square} on (p, g, g^y) and get $g^{y^2} \mod p$
 - 3. Run A_{square} on (p, g, g^{x+y}) and get $g^{(x+y)^2} \mod p$
 - 4. Compute $\frac{g^{(x+y)^2}}{g^{x^2} \cdot g^{y^2}} = g^{2xy}$ and find its square root